Archive

Archive for the ‘Urine’ Category

1st International Terra Preta Sanitation Conference Aug 2013

Mon, 17Jun2013 1 comment

1st International Terra Preta Sanitation Conference Aug 2013

Location:Hamburg University of Technology. The campus is located in Hamburg-Harburg.

Dates: Wednesday, 28  -  Saturday  31 August 2013

Background

…An analysis of a former civilisation in the Amazon, nowadays Brazil, reveals concepts which enable a highly efficient handling of organic wastes. Terra Preta do Indio is the anthropogenic black soil that was produced by ancient cultures through the conversion of biowaste and faecal matter into long-term fertile soils. These soils have maintained high amounts of organic carbon even several thousand years after they were abandoned. It was recently discovered that around 10% of the originally infertile soils in the Amazon region was converted this way from around 7,000 until 500 years ago. Due to the accumulation of charred biomass and other organic residues, terra preta subsequently formed giving it a deep, distinctly dark and highly fertile soil layer.One of the surprising facts is that this soil is highly productive without adding fertiliser.

Recent research concludes that this culture had a superior sanitation and bio-waste system that was based on source separation of faecal matter, urine and clever additives particularly charcoal dust and treatment steps for the solids resulting in high yielding gardening. Additives included ground charcoal dust while the treatment and smell prevention started with anaerobic lactic-acid fermentation followed by vermicomposting.The generation of new Terra Preta (‘terra preta nova’) based on the safe treatment of human waste could be the basis for sustainable agriculture in the twenty-first century to produce food for billions of people….

Speakers / Sessions

Thursday
Conference Keynote Dr. Haiko Pieplow (tbc)
Session 1: TP soils, soil fertility, organic farming
Key note from Bruno Glaser or Albrecht von Sydow (Germany) (tbc)

  • T. Theuretzbacher (Austria): Investigation on Terra Preta like products on the german-Austrian market
  • N. Andreev (Moldava): The effect of terra preta like substrate on germination and shoot growth of radish and parsley
  • H. Factura (Philippines): Addressing Poor Sanitation and Generating Added Values through Terra Preta Sanitation
  • B. Pelivanoski (Germany): Terra Pellet – an organic fertilizer inspired by terra preta

Session 2: TPS Applications, Quality of products, hygienic parameter, legislation, certification
Keynote presentation Prof. Srikanth Mutnuri (India) (tbc): Terra Preta as an Alternative for the Management of Sludge from Waste Water Treatment Plant

  • S. Böttger (Germany): Terra Preta – production from sewage sludges of decentralised wastewater systems
  • M. Stöckl (Germany): Vermicomposting of fecal matter and organic waste – a quality assessment of products
  • D. Meier Kohlstock (Germany): The integration of Terra Preta Sanitation in European nutrient cycles – Options for alternative policies and economies

Session 3: Terra Preta Sanitation: toilet systems and designs / Logistic and operation / practical examples
Keynote speech Prof. Charlotte de Fraiture (Netherlands) (tbc)

  • R. Wagner (Germany): New challenges of resource management in the Botanic Garden Berlin by producing and applying biochar substrates
  • R. Kuipers (Netherlands): A socio-economic assessment of urine separation, with a reflection on the possibilities for Terra Preta Sanitation, for the recycling of nutrients to rural agriculture in the Philippines
  • M. Bulbo (Ethiopia): TP application in Ethiopia
  • R. Wolf (Germany): Application of Fermented Urine for build up of Terra Preta Humus in a Permaculture Park and Social Impact on the Community Involved

Friday
Session 4: Carbon composting of biowaste and excreta/Climate farming / wood gas technology for energy and char coal production / Pyrolysis vs. hydrothermal carbonization
Keynote presentation Prof. Zifu Li (China) (tbc): Energy balance analysis on the pyrolysis process of animal manure
T. Voss (Germany): Wood gasification in parallel flow fixbed gasifieres for combined energy and charcoal production – experiences from six years of operation (abstact follows)

  • C. vom Eyser (Germany): Product quality of ç from sewage sludge in terms of micropollutants
  • E. Someus (Sweden): Reducing mineral fertilisers and chemicals use in agriculture by recycling treated organic waste as compost and bio-char products
  • J. Fingas (Germany): Climate farming – Practical experience from sub-Saharan Afrika

Session 5: Microbiology, sanitization and lactic acid fermentation
Keynote presentation Dr. Gina Itchon (Philippines): The Effectivity of the Terra Preta Sanitation (TPS) Process in the Elimination of Parasite Eggs in Fecal Matter: A Field Trial of TPS in Mindanao, Philippines

  • A. Yemaneh (Germany/Ethiopia): Investigation of Low-Cost Sugar Supplement for Lactic Acid Fermentation of Human Excreta in Terra Preta Sanitation System
  • A. Febriana (Indonesia): Faeces Treatment By Lactofermentation Process Based On Terra Preta Sanitation System Concept
  • A. Walter (Austria): Microbial communities in charcoal and microbe amended composts
  • F. Scheinemann (Germany): Sanitation and conservation of nutrients in cattle manure and sewage sludge by anerobic fermentation

Click here to go to the conference website

Organisation Committee

Institute of Wastewater Management and Water Protection at TUHH
GFEU e. V.
WECF

Co-Organisers

Institute of Environmental Technology and Energy Economics at TUHH
German WASH Network
UNESCO IHE
BDZ

all details are from their site

Mapping Sanitation: a Tedx Talk by Faisal Chohan, a Senior TED Fellow

Fri, 22Mar2013 1 comment

A quick 90 second video about an effort to map sanitation  in Rawalpindi Pakistan

Faisal Chohan, a Senior TED Fellow and TEDxIslamabad organizer, will now continue his mapping work with a related mission: Improving sanitation in order to prevent the spread of cholera—a bacterial infection in the small intestine, primarily caused by drinking water or eating food that has been contaminated by feces of an infected person. The rapid dehydration and electrolyte imbalance that results from cholera can lead to death if left untreated. Read more on TEDx….

 

Releated links

Other useful links

Scaling out Sanitation in Rawalpindi, Pakistan  2009 article by Pakistan Institute for Environment-Development Action Research (PIEDAR).

About TedxCity.2.0

Kzyq1qtgk5j3ysiefaug

In the tradition of our TEDxYouthDay, TEDxChange, and TEDxWomen initiatives, comes TEDxCity2.0: A day of urban inspiration. 28 TEDx communities around the world participated in TEDxCity2.0 day on October 13, 2012.  We will host our next event in 2013 to share the powerful narratives of urban innovators and organizers, stewards and artists, builders and tastemakers. The TEDx platform will harness the power of people across the globe to encourage them to host a TEDx event, themed “City 2.0.  source & more…

 

Rose George: Take toilets seriously talk at TED@London

Thu, 21Mar2013 1 comment

A great video to watch while waiting to see the  recording of  Rose George when she spoke at Ted 2013

 

Profile from TED 2013:

Rose George thinks, researches, writes and talks about sanitation. Diarrhea is a weapon of mass destruction, says the UK-based journalist and author, and a lack of access to toilets is at the root of our biggest public health crisis. In 2012, two out of five of the world’s population had nowhere sanitary to go.

The key to turning around this problem is to “stop putting the toilet behind a locked door,” says George.  Let’s drop the pretense of “water-related diseases” and call out the cause of myriad afflictions around the world — “poop-related diseases” that are preventable with a basic toilet. Once we do, we can start using human waste for good.

George explores the problem in her book The Big Necessity: The Unmentionable World of Human Waste and Why It Matters and in a fabulous special issue of Colors magazine called “Shit: A Survival Guide.”

Related Links for Rose George

Other powerful TED , TEDX,  TED-Ed links

Waterless Urinals: A Resource Book

Thu, 21Feb2013 Comments off

This is a Wonderful 39 page  Technical document  on covering  all aspect  of Waterless Urinals and some variants that incorporates
the core ideas.

 waterless urinal

written by

  • Dr V M Chariar
  • S Ramesh Sakthivel

from forward

This Resource Book is a guide that seeks to assist individuals, builders, engineers, architects, and policy makers in promoting waterless urinals and the benefits of harvesting urine for reuse through waterless urinals and urine diverting toilets.

Chapters cover a wide set of Waterless Urinals details

  1. Waterless Urinals
    1. 1.1  Advantages of Waterless Urinals and Reuse of Urine
    2. 1.2  Demerits of Conventional Urinals
  2. Functioning of Waterless Urinals
    1. 2.1  Sealant Liquid Traps
    2. 2.2  Membrane Traps
    3. 2.3  Biological Blocks
    4. 2.4  Comparative Analysis of Popular Odour Traps
    5. 2.5  Other Types of odour Traps
    6. 2.6  Installation and Maintenance of Waterless Urinals
  3. Innovative Urinal Designs
    1. 3.1  Public Urinal Kiosk 21
    2. 3.2  Green Waterless Urinal
    3. 3.3  Self Constructed Urinals
  4. Urine Diverting Toilets
  5. Urine Harvesting for Agriculture
    1. 5.1  Safe Application of Urine 3
    2. 5.2  Methods of Urine Application
  6. Other Applications of Urine
  7. Challenges and the Way Forward
  8. References and Further Reading
The book has a solid collection of tables and diagrams that support the text
  • Comparative analysis of popular odour traps
  • Average chemical composition of fresh urine
  • Recommended dose of urine for various crops
  • Waterless urinals for men
  • Schematic diagram showing functioning of urinals
  • Sealant liquid based odour trap
  • Urinals with sealant liquid based odour traps
  • Flat rubber tube by Keramag and silicon membranes by Addicom
  • LDPE membrane by Shital Ceramics
  • Biological blocks
  • Formwork used for fabrication of public urinal kiosk
  • Reinforced concrete public urinal kiosk
  • Drawing of public urinal kiosk established at IIT Delhi
  • Green urinal established at IIT Delhi
  • Plant bed of green urinal with perforated pipe
  • Drawing of public urinal kiosk established at IIT Delhi
  • Self constructed urinal Eco‐lily
  • Squatting type urine diverting dry toilet with two chambers
  • Urine diverting no mix toilet 27 Sectional view of a urine diverting dry toilet
  • Deep injection of urine using soil injector
  • Deep injection of urine using perforated pet bottles
  • Use of fertilisation tank for applying urine through drip irrigation
  • Manually operated reactor for recovery of struvite
  • Schematic drawing of ammonia stripping from urine
Among many topics the Doc  weighs pros and cons of of traps to prevent odor and gases for escaping .Most of the solutions  have cost / maintenance barriers that limit feasibility to particular set of cases. India is a large county and need a variety of solutions as does the rest of the world.
We will  will  be interested to learn more about Zerodor
“An odourless trap Zerodor which does not require replaceable parts or consumables resulting in low maintenance costs has been developed at IIT Delhi. This model is in final test stage yet to be made commercially available.”    more on Zerodor
further notes from forward

Waterless Urinals do not require water for flushing and can be promoted at homes, institutions and public places to save water, energy and to harvest urine as a resource. Reduction in infrastructure required for water supply and waste water treatment is also a spinoff arising from installing waterless urinals. The concept, founded on the principles of ecological sanitation helps in preventing environmental damage caused by conventional flush sanitation systems.

In recent years, Human Urine has been identified as a potential resource that can be beneficially used for agriculture and industrial purposes. Human urine contains significant portion of essential plant nutrients such as nitrogen, phosphate and potassium excreted by human beings. Urine and faeces can also be separated employing systems such as urine diverting toilets. In the light of diminishing world’s phosphate and oil reserves which determine availability as well as pricing of mineral fertilisers, harvesting urine for reuse in agriculture assumes significant importance. Akin to the movement for harvesting rain water, urine harvesting is a concept which could have huge implications for resource conservation.

Link to download  book & A deeper overview:

with excerpts can be found on the the India Water Portal site  more….

Prepared By

SuSanA Releases Compilation of 13 factsheets on key sustainable sanitation topics

Thu, 10May2012 Comments off

From SuSanA web page:

FACTSHEETS

  1. Capacity development for sustainable sanitation
  2. Financial and economic analysis
  3. Links between sanitation, climate change and renewable energies
  4. Sanitation systems and technology options
  5. Productive sanitation and the link to food security
  6. Planning of sustainable sanitation for cities
  7. Sustainable sanitation for schools
  8. Integrating a gender perspective in sustainable sanitation
  9. Sustainable sanitation for emergencies and reconstruction situations
  10. Sanitation as a business
  11. Public awareness raising and sanitation marketing
  12. Operation and maintenance of sustainable sanitation systems
  13. Sustainable sanitation and groundwater protection

The  document is available as a single 116 page  pdf   or  two pdfs breaking the dock in half.  

It is filled with hot links to a wealth of reference material. This alone will make the document invaluable. All urls are written out so links retain their value in a paper copy.

The list of contributors is is huge. A nice thing is the main authors  provide hot email links  at the end of each of the 13 sections so you can easily contact them. 

The  only problem with such a beautiful document is there is no traditional table of contents or index.  

Image

Executive summary from  the pdf

“The target audience for this document includes a wide range of readers who are interested in aspects of sustainable sanitation and their links with other environmental and development topics. Possible readers include practitioners, programme managers, engineers, students, researchers, lecturers, journalists, local government staff members, policy makers and their advisers or entrepreneurs. The emphasis of this document is on developing countries and countries in transition.

The Sustainable Sanitation Alliance (SuSanA) is a loose, informal network of organisations such as NGOs, private companies, governmental and research institutions as well as multilateral organisations that aim to contribute towards achieving the Millennium Development Goals (MDGs) by promoting sustainable sanitation.

Sanitation generally refers to the provision of facilities and services for the safe disposal of human excreta and domestic wastewater. Personal hygiene practices like hand washing with soap are also part of sanitation. Sanitation also includes solid waste management and drainage but these two aspects are not the focus of this publication. In order for a sanitation system to be sustainable, it has to be economically viable, socially acceptable, technically and institutionally appropriate, and protect the environment and natural resources.

SuSanA contributes to the policy dialogue towards sustainable sanitation through its resource materials and a lively debate amongst the members during meetings, in the working groups, bilaterally, through joint publications and via various communication tools like the open online discussion forum. This publication showcases the broad knowledge base and state of discussions on relevant topics of sustainable
sanitation. All of the working groups have published one or two factsheets providing a broad guidance relating to their specific thematic area.

The 11 working groups of SuSanA have the following titles:
WG 1 Capacity development
WG 2 Finance and economics
WG 3 Renewable energies and climate change
WG 4 Sanitation systems, technology, hygiene and health
WG 5 Food security and productive sanitation systems
WG 6 Sustainable sanitation for cities and planning
WG 7 Community, rural and schools (with gender and social aspects)
WG 8 Emergency and reconstruction situations
WG 9 Sanitation as a business and public awareness
WG 10 Operation and maintenance
WG 11 Groundwater protection

Due to the inter-relationships between the working groups, the factsheets are inter-related and where appropriate, are cross-referenced. The factsheets relate to different parts of the “sanitation chain”, which consists of user interface, conveyance, collection/storage, treatment, reuse or disposal. We have attempted to visualise the linkages between the different working groups and the sanitation chain in the following schematic. There are some working groups which are dealing with overarching themes and these have been placed inthe centre of the schematic.”

Publisher:

Urine Diverting Toilets in Climates with Cold Winters

Thu, 04Nov2010 2 comments

There was post on the yahoo group ECOSANRES asking about Cold Climate toilets -Cold weather toilets.

A reply mentioned this PDF:

Urine Diverting Toilets in Climates with Cold Winters Technical considerations and the reuse of nutrients with a focus on legal and hygienic aspects.

While  the report is several year old,  the $h1t is still good and worthy of summarizing

basic facts:

Authors and Editors:

Chapters/ sections

1 – Summary
2 – Dry Urine Diversion
3 – EU directives relating to dry urine diversion where urine and faeces
4 – Legal aspects
5 – Cold temperature aspects
-   Freezing of urine
-   Hygiene and treatment of urine
-   Pharmaceuticals and hormones
-   Hygiene and treatment of faeces
-   Technical aspects: construction and maintenance of
-    urine diverting toilets in climates with cold winters
-   Pipes for urine
-   Storage
-   Odour control with ventilation
-   System for reuse of urine and faeces in crop production
-   Home gardens
-   Large Scale Agricultural Production
6 – Examples from pilot projects and research from the northern hemisphere
7 – Knowledge gaps and identified research needs
8 – Annex

Three key points  from the Reportssummary are:

“There are functioning examples of dry urine diversion in regions in the world with cold winter climates. The examples presented in the report show that it is possible to arrange agricultural reuse of urine and faeces in large or small scale crop production.”

“The fact that there are only short periods during the year when urine can be used as a fertiliser place demands on a storage system for the urine. There are a few alternatives; one of the most economic may be to arrange storage on a farm, in covered storage containers previously used for animal urine.”

“There are still development needs and knowledge gaps. Some of these are related to temperate and cold climates, such as the fate of microorganisms in urine at temperatures below freezing. However, this should not be considered a major constraint to the development of dry urine diversion, since the risk is relatively low, and can be handled through combination with other hygienic activities.”

The report reprints 3  basic but useful  tables from other organizations:

1: Recommended guideline storage times for urinea based on estimated pathogen contentb and recommended crop for larger systemsc (WHO, 2006).

2: Requirements on storage and allowed crops for diverted human urine that is collected from larger systems. (Swedish EPA, 2002).

3: Recommendations for storage treatment of dry excreta and faecal sludge before use at household and large-scale (municipal) levels. The treatments assume no
addition of non-sanitised material (WHO, 2006).

Again the report is a quick and easy read, providing a good  preface to a much larger  document that needs to be written on the subject.    The report  ends  nicely,  saying  we need more  research :

There are some definite areas where there is a need of systematic research and development (R&D). Some of these, especially related to winter climate aspects, are specified in the following text.

Research needs

One of the most discussed questions regarding urine diversion is the fate of pharmaceutical residues after excretion, and how this affects choice of collection and treatment of human excreta. Research on fate of pharmaceuticals in waste water treatment plants is being undertaken in Germany and Sweden. No known field studies are taking place on fate of pharmaceutical residues when urine or sewage sludge is applied to the soil. The current recommendation to use urine as a fertiliser in agriculture rests on the analysis that the soil system is well suited to digest harmful organic substances due to microbial life in the surface layers of soil. This would be an interesting field of study that can give valuable information on design of reuse systems.

Sanitisation of faeces is another aspect that needs attention. The WHO guidelines on the reuse of human excreta in agriculture mention the alkaline treatment by adding ashes or alkaline substances with a storage time of 6 month ( > 35 °C ) as a possible way to sanitise faeces, or 1,5 – 2 years storage time. The temperature intervals given do not cater for needs in temperate or cold climates, which means that knowledge on treatment of faeces in this region should be developed. Research on more simple and robust treatment methods is needed.

Suggested applied R&D projects

-   Establishment of new pilot projects and evaluation of existing projects. Monitoring and evaluation of existing dry urine diversion projects is a costefficient way of generating knowledge. Dissemination of results, regardless of if they are positive or negative, from existing pilots is vital. The establishment of new pilot projects will also contribute to the bank of knowledge.

-   Sanitisation of faecal fraction: research on requested storage in ambient or alkaline environment in temperate and cold climates (winters with temperatures far below zero).

-   Sanitisation of faecal fraction: research on the implementation of chemical sanitisation of faeces with urea. This is an interesting method, but the practical implications need to be studied and developed.

-   Sanitisation of urine: what happens in the urine when it is frozen and what are the implications for storage intervals?

-   Pharmaceutical residues: studies of soil system when urine is used as a fertiliser. Effect on microbial community, speed of decomposition. Comparisons with sewage sludge, farmyard manure.

-   Toilet design: development of risers and squat-plates for local production. Care given to needs of different users: children, disabled, elderly, men, women. Toilets of today need development since many do not divert as much urine as possible, and are unnecessarily difficult to clean.

-   Systems analysis from an economic point of view. Comparison of investment and maintenance costs of urine diversion systems and conventional sanitation.

-   Systems analysis from an environmental point of view. How do different activities affect the sustainability of the system, for example fertilisation strategies, choice of tank, joint measures or single toilets?

-   What are the economical incentives for implementation of urine diversion? How to design the economical system with the regard to municipal responsibility and financial support/ interactions. How should the systems be organized and which are the most important drivers for the different stake holders.”

other  related links

The effects of urine storage conditions on struvite recovery

Mon, 25Jan2010 Comments off

This Came up in a google news watch  – worthy of noting – originally published in 2006 by Elizabeth  Anne Tilley

Absract:

“Phosphorus, like oil, is a non-renewable resource that must be harvested from finite resources in the earth’s crust. An essential element for life, phosphorus is becoming increasingly scarce, contaminated, and difficult to extract. Struvite, or magnesium ammonium phosphate (MgNH₄P0₄.6H₂0) is a white, crystalline phosphate mineral that can be used as a bioavailable fertilizer and can be recovered from aqueous solutions such as digestor supernant. In response to diminishing water resources, increasing nutrient pollution, and largely unaffordable centralized treatment, a paradigm of Ecological Sanitation (EcoSan) has emerged. A central tenant of EcoSan technology is nutrient recovery; by separating urine from feces in the absence of water, urine can be used as a clean, concentrated nutrient source. Urine harvested in this manner is used as a liquid fertilizer with varying degrees of success and acceptance. This research examines the potential of urine to be a feedstock for struvite recovery. By recovering a sustainable source of phosphorus from urine, the prospect of appropriate sanitation and closed-loop nutrient systems, may move closer to reality. In laboratory experiments using synthetic and real human urine, different methods of preparing urine to be used as a feedstock for struvite recovery, were examined. The effect of temperature, faecal contamination, dilution, and headspace on stored nutrient levels was examined. The effect of adding different quantities of magnesium, at different times, on the amount of phosphorus that could be removed from solution, was also examined. An average of 70% of phosphorus could be removed from real urine in the form of struvite when magnesium was added to the urine solution after ureolysis had forced the precipitation of calcium and magnesium minerals; magnesium added before ureolysis began retarded the process. Dilution and the presence of wastewater were found to affect the rate of ureolysis but not the purity of the struvite recovered; recovered struvite was approximately 99% pure regardless of dilution or contamination. Based on a comparison of the results, synthetic urine was found to be representative of the general behaviour of real urine during struvite formation.”

download link is VERY slow:  ubc_2006-0678.pdf

the latest revised version of the WHO Technical Notes for Emergencies

Thu, 14Jan2010 Comments off

posting per request

Please find the latest revised version of the WHO Technical Notes for Emergencies freely available at:

http://wedc.lboro.ac.uk/knowledge/notes_emergencies.html

Other free downloadable resources for emergencies are available from the WEDC Bookshop, including:

Emergency Water Supply
Emergency Sanitation
Controlling and Preventing Disease
Excreta Disposal in Emergencies
Emergency Vector Control

Visit: http://wedc.lboro.ac.uk/knowledge/bookshop.html

PLEASE FORWARD THIS MESSAGE TO COLLEAGUES WHO MAY FIND THESE RESOURCES HELPFUL.

Thank you

WEDC Publications

Categories: excreta, medical, sanitation, Urine

DRY TOILET 2009 Conference proceedings and presentations

Sun, 27Dec2009 Comments off

The proceedings from the DRY TOILET 2009 conference held by Global Dry Toilet Association of Finland are  available   They are  a great resource and available at  http://huussi.net/tapahtumat/DT2009/full.html

The summary  is also avaliable in  – suomi (Finish) and Russian as a pdf

The Suomi version of the  home page is http://www.huussi.net/

Session Presentations

&
Country Focus

1 PROMOTING ECOLOGICAL SANITATION IN ORDER TO
ACHIEVE MDG’S
  • “Composting Toilet – The Bangalore, India experience”
  • Sustainable sanitation in Namibia’s lowest income urban
    areas: “The potential of composting toilets”
  • “To dry or not to dry?-People matter in scaling up dry
    sanitation”
  • “Dry Toilets in Tajikistan”
  • “Sustainable sanitation beyond Taps & Toilet”
  • “Prevalence of Ecological sanitation uptake and associated
    factors in Kabale municipality, Uganda”
India,
Namibia, Finland, Tajikistan, Nepal, Uganda
2 HEALTH AND SAFETY ASPECTS RELATED TO DRY
SANITATION
  • “Toilets and health throughout history”
  • “The public health safety of using human excreta from urine
    diverting toilets for agriculture: The Philippine experience”
  • “Dry Toilet – A boon to rural community”
  • “Ecological sanitation: inactivation of pathogens in faeces
    from dry toilet – grey water disposal”
  • “From pit latrine to a safe and sustainable toilet.”
  • “Possible public health implication of excreta re-use in
    poorly sanitated rural farming communities of Ebonyi state, South-East
    Nigeria”
Philippines, India, Argentina, Belarus, Nigeria
3 IMPLEMENTING ECOLOGICAL SANITATION IN
EMERGENCIES
  • “Sanitation in the disaster cycle – immediate response,
    preparedness and risk reduction”
  • “Provision of Dry Toilets in earthquake hit areas of
    Pakistan – learning from first hand experience”
  • “Eco-toilet for disaster preparedness”
  • “Introducing ecological sanitation in emergency: Some
    lessons learned from a pilot project Bangladesh”
  • “Sanitation in IDP and refugee camps in Chad: the current
    and future challenges”
Pakistan,
Bangladesh, Chad
4a PROSPECTS AND CHALLENGES IN RE-USE OF EXCRETA
  • “Pathogens of concern for developing countries and risk of
    reusing ecosan sludge in agriculture”
  • “Urine from separating toilets for non-edible plants”
  • “From pit latrine to nutrient conservation”
  • “Re-use of human’s urine in market-gardening in
    South-Benin: financial returns analysis”
  • “Biogas generation – a multi-dimensional development
    approach”
Mexico,
Benin, Ethiopia
4b PROSPECTS AND CHALLENGES IN RE-USE OF
EXCRETA continues
  • “Dry toilet compost and separated urine as fertilisers for
    cabbage and potato – a case study from Finland “
  • “Prospects and Challenges in the reuse of human excreta in
    Nakuru Municipality, Kenya”
  • “Use of Faecal Sludge for Agriculture in Tamale Metropolis:
    perception of Farmers, Consumers and Relevant Agencies”
  • “Positive spin offs using mobile urinals and UD toilets in
    Burkina Faso”
  • “Study on the compost produced by compost bins and ecosan
    latrines and survey on knowledge attitudes and practices in usage of
    compost bins and ecosan latrines”
Finland,
Kenya, Ghana, Burkina Faso,

Sri Lanka

5 CHALLENGES IN IMPLEMENTING ECOLOGICAL
SANITATION
  • “Evaluation of social and cultural acceptance of the
    biotoilet system”
  • “Social representattions of hygiene and excretes disposal -
    The case of ecological dry toilets introduction in Quibdo and
    Tumaco-Columbia”
  • “Towards a common goal. The challenges of the sanitation
    sector in Zambia”
  • “Living with the marginalised: Addressing the
    socio-economic and cultural aspects in implementing Oka-Dry Toilets in
    Madimba; case of Lusaka”
  • Sari Huuhtanen*, Finland; Michelo Katambo, Zambia:
  • “The challenge of social change; experiences from Zambia
    dry-sanitation project (ZASP, 2006-2008)”
Mexico,
Columbia, Zambia
6 GENDER ASPECTS
RELATED TO DRY SANITATION
  • “Gender aspects of ecological sanitation with urine
    diverting dry toilets”
  • “Female local latrine builders: Contributing towards
    objectives of International Year of Sanitation, 2008″
  • “Women and ecological sanitation”
  • “Promotion of dry toilets for reducing vulnerability for
    the poor women having Islamic and cultural values in urban slums of
    Bangladesh”
Nepal,
Uganda, Bangladesh
7a TECHNICAL
DEVELOPMENT OF DRY TOILETS
  • “Is the
    Agricultural utilisation of Treated Urine and Faces recommendable?”
  • “Developing low cost composting toilet for developing
    countries”
  • “Solar thermal sanitation of human faeces – an affordable
    solution for
    ensuring sustainability of EcoSan activities”
  • “Feasibility assessment of application of onsite volume
    reduction
    system (OVRS) for source-separated urine”
  • “Urban slum dwellers in Kenya and Bangladesh benefit from
    using Peepoo
    bags which are self-sanitising and biodegradable”
Kenya and
Bangladesh and others
7b TECHICAL
DEVELOPMENT OF DRY TOILETS continues
  • “From the outhouse to indoor dry toilets in Finland”
  • “Estimation of water evaporation rate from composting
    toilet”
  • “Implementation of urine-diverting dry toilets in
    multi-storey apartment buildings in Ethiopia”
  • Dry sanitation in multi-story apartment buildings: “The
    case of Dongsheng, Inner Mongolia, China”
  • “The humanure toilet”
Finland,
Ethiopia, Inner Mongolia, China
8 CAPACITY
BUILDING
  • “Going to scale with urine diversion in Sweden – From
    individual households to municipal systems in 15 years”
  • “The processes of adaption during the introducing urine
    diverting toilets in Kyrgyzstan”
  • “Influence of social, cultural, economic and gender aspects
    in dry toilet as eco-sanitation tool. Case study of Sukuma-nomadic
    community in Malinyi, Tanzania.”
  • “Experiences with ecosan systems to provide sustainable
    sanitation for schools in Kenya and India”
  • “Gold Factory – An experimental art project with dry
    toilets”
Sweden,
Kyrgyzstan, Tanzania,Kenya, India
Side event SUSTAINABLE
SANITATION FOR TOURISM AND RECREATION
  • “Toilet provision in the Cairngorms national park,
    Scotland, UK”
  • “Experience of biotoilet installations on Kizhi island,
    Republic of Karelia, Russia”
  • “Promotion of sustainable development of rural communities
    around especially protected natural areas in Kazakhstan”
  • “Public toilets and care practices in nature parks in
    Finland, current situation and recommendations for improvement”
Scotland,
Republic of Karelia, Russia, Kazakhstan, Finland

EcoSan video focusing on Urine as Fertilizer

Mon, 19Oct2009 1 comment

Here is great video showing  how the EcoSan toilet works, stressing:
1 You don’t need water to us  an EcoSan toilet, saving a precious resource
2  There is a huge benefit to use urine as a fertilizer

The video the workings of toilet itself. What I find wonderful is  that  this video  explains  & shows the full sequence of steps taken to  after urination to get the urine onto the the field as fertilizer. This is followed by a wonderful comparison of crop yields comparing side by side  fields, on fertilized with urine the other fertilized with commercial fertilizer.  The fields  fertilized with urine did better than the commercial fertilizers and at NO COST!!!! The video is in English and the location is Ethiopia. Several local experts are use to explain particular points.

Title Urine Diversion Toilets: advantages and use agriculture
a brief Ecosan Documentary by Andreas Wilkin c 2008
produced for the ROSA project
contact Franziska Meinzinger  f.meinzinger   @    tu-harburg.de
Technische Universitat Hamburg-Harburg TUHH
(Hamburg University of Technology)

WASHLink  Notes:  addition resources:

other  related YouTube videos (using following search terms)
ecosan urine ecosan construction ecosan watsan
ecosan design materials ecosan fertilizer ecosan toilet
WHO:
Google  Scholar search

washlink boarder2

Linking the drops of knowledge to form a stream of WASH information: WATSAN, Sanitation, Water, Hygiene, and Global Health

WASH Finance

Costs and funding of water, sanitation and hygiene (WASH) services for all

bacigalupe

Gonzalo Bacigalupe, EdD, MPH

Ross Bailey's Blog

Campaigns and digital innovations

Econosteez

Econemana

stichtingconnectinternational

www.connectinternational.nl

A Page from Tom Paulson

Global Health, Science and Journalism

recyclewater

Just another WordPress.com site

Source News Service Feedback's Blog

Focus Group Interviews to mesure spread, use and impact of IRC Services

Sustainable Sanitation in Emergency & Reconstruction

News of developments and innovations - collected by SuSanA working group 8

Peter J Bury 4 IRC

A journey into a "using a Blog for work" experience @ IRC International Water and Sanitation Centre

Medindo Água

Neste blog são sugeridos sites, textos e trabalhos técnicos sobre conservação, medição e perdas de água. Com o entendimento de que MEDIR é determinar ou avaliar a grandeza ou a quantidade de; calcular; regular; moderar; refrear; proporcionar; ponderar; analisar; ter a extensão de.

Insourced- Dr. Kate Tulenko

Thoughts on a healthier world

The Political Economy of Water Project

About water politics, economics, and other issues surrounding this vital resource.

Environmental Engineering Engenharia do Ambiente

This group aims sharing opportunities between Environmental Engineers / Este grupo tem como objectivo partilhar oportunidades entre profissionais de Engenharia do Ambiente (English / Português)

Global Health Dispatch

Diaries from the Field

%d bloggers like this: